
Introduction
Visual complexity has applications 

to art, web design, advertisement, 

psychology, and computer science 

(Saraee et al., 2020).

Do humans describe images 

differently based on their 

complexity?

Can machines predict visual 

complexity from verbal image 

descriptions?

Materials and methods

BERT: a machine learning model

“pre-trained” to understand human

language (Kenton et al., 2019)

SAVOIAS dataset: images with

complexity scores generated by

humans (Saraee et al., 2020) →

We developed a complexity

metric, distinct number of

regions, using this data

COCO dataset: images with

captions written by humans (Lin et

al., 2014) → We scored images’

complexity and “fine-tuned” BERT

using this data

Results
• New visual complexity metric: distinct number of regions

• Pearson’s correlation of r = 0.62 (p < 0.001) between number of distinct regions 

and human-generated complexity scores for images from the Objects, Interior 

design, and Scenes subsets of the SAVOIAS dataset

• Classification model: 83.9% accuracy

• Regression model: Pearson’s correlation r = 0.659 (p < 0.001) between predicted 

and actual complexity scores

• Problem: How to prevent the model from learning dataset-specific biases?

– Solution: Caption transformation

Conclusions

In this work, we:

• Defined a new visual complexity 

metric: number of distinct 

regions 

• Identified the complexity of 

images from the COCO Dataset 

(Lin et al., 2014) using our 

metric 

• Provided classification and 

regression models to predict 

image complexity from captions

Our work suggests that visual and 

linguistic complexity are related, 

and that we can use this 

relationship to better identify 

complex images and improve 

algorithms for tasks that involve 

both vision and language, such as 

automatic caption generation.
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transformed captions

Further information
Please see https://emlinking.github.io/ for 

more on this project, or reach out via email at

e.lin2@columbia.edu.
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