
Text-Based Prediction of Visual Complexity

Eleanor Lin
Columbia University
e.lin2@columbia.edu

Abstract
Visual complexity is of interest across cognitive
science, computer science, advertising, web de-
sign, and other areas, due to the increased dif-
ficulty both computers and humans encounter
in processing complex visuals. Intuitively, one
might expect biases in how complex visuals
are described: e.g., using adjectives like "busy"
or "cluttered." We explore the relationship be-
tween linguistic and visual complexity by ask-
ing if it is possible to predict an image’s vi-
sual complexity based on its textual descrip-
tion alone. Our text-based approach contrasts
with the majority of past work on analyzing vi-
sual complexity, which focuses on the images
themselves, rather than their descriptions. We
introduce a new automated complexity metric,
number of distinct regions per image, which
serves as an effective predictor of human judg-
ments of visual complexity. Using this metric
to identify complex and noncomplex images
from the Microsoft COCO Dataset, we fine-
tune BERTBASE to predict visual complexity
from image captions. We find that the model is
able to predict visual complexity with a high de-
gree of accuracy, and appears to rely on vocab-
ulary and sentence structure for its predictions.
Our work suggests a relationship between vi-
sual complexity of images and linguistic com-
plexity of image descriptions, which may be
leveraged to better identify complex images
and improve algorithms for tasks that involve
both vision and language, such as automatic
caption generation.

1 Introduction

Visual complexity has been variously defined as the
amount of information in, number of elements in,
and difficulty of describing an image (Saraee et al.,
2018, 2020). The latter definition suggests the link
between visual complexity and linguistic complex-
ity which we explore in this work, through the task
of text-based prediction of visual complexity.

The ability to identify visually complex images
is of interest due to the particular challenge that

such images present in computer vision tasks such
as object detection and segmentation. Furthermore,
tasks that involve both visual and linguistic com-
ponents, such as visual question answering and
caption generation, would benefit from deeper in-
vestigation of the relationship between visual and
linguistic complexity (Saraee et al., 2018, 2020).

Our text-based visual complexity prediction task
is motivated by the observation that image de-
scriptions often contain visual complexity cues,
as shown in Figure 1. The image on the left is
less complex than the image on the right, in terms
of factors such as number and diversity of objects,
shapes, and colors. The descriptions of the less
complex image include adjectives such as "empty,"
hinting at the relative scarcity of objects, whereas
the descriptions of the more complex image include
adjectives such as "many" and "busy," indicating
numerosity of objects. We hypothesize that image
descriptions contain enough visual complexity cues
for a model such as BERT to predict an image’s
visual complexity from its description alone.

Past attempts to quantify visual complexity have
included low-level metrics, such as the number
of regions resulting from segmenting an image
(Saraee et al., 2018, 2020). We expand upon this ap-
proach in order to determine if it is possible to pre-
dict an image’s visual complexity from its textual
description. First, we define a new visual complex-
ity metric designed to correspond to intuitive hu-
man judgements of visual complexity, the number
of distinct regions in the mean-shift segmentation
of an image (§4). We show that our metric outper-
forms other low-level metrics previously tested on
the Objects, Scenes, and Interior Design categories
of the SAVOIAS visual complexity dataset (see §§2
and 3). Next, we use our metric to groundtruth the
complexity of images from the Microsoft COCO
Dataset (Lin et al., 2014). Finally, we fine-tune
BERTBASE sequence classification and regression
models to predict image complexity from COCO
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"Dozens of individuals all crossing the street on Broadway.“
"a bunch of people cross a city street“
"There are many people walking on the busy downtown street.“
"Many people walking and crossing a downtown city street.“
"Many people crossing the street in a busy city."

"This highway is empty this early on the morning,“
"A traffic light suspended over a rural road.“
"A red traffic light at an empty intersection“
"An intersection with a stoplight on a roadway that has no vehicles 
traveling on it.“
"View down a two lane road at a red stop signal."

Figure 1: Examples of visually complex (left) and a noncomplex (right) images from the Microsoft COCO Dataset (Lin et al.,
2014), along with their captions. Visual complexity cues in the captions are boldfaced: e.g., plural nouns and certain adjectives
("busy," "empty"). Some complexity cues, such as the fact that a "rural road" is likely to be less busy than a "city street," can
only be recognized using commonsense knowledge, which machine learning models may not have access to. The last caption
describing the noncomplex image is ambiguous as to whether the scene described is visually complex, underscoring the difficulty
of text-based prediction of visual complexity,

captions (§§5-7.3).

We find that text-based BERT classification and
regression models are able to predict the complex-
ity of COCO images from their captions alone
with a high degree of accuracy. However, BERT
seems to learn complexity biases in the COCO
Dataset, i.e., that the presence of certain object
types in an image is associated with its complexity
(§6). Through cross-domain evaluation and caption
hypernymization experiments designed to remove
such biases, we find evidence that BERT also relies
on sentence structure in order to make complex-
ity predictions (§§7 and 7.3). Our work suggests
that visual and linguistic complexity are related
across images and image descriptions in the COCO
Dataset.

2 Related work

In section 2.1, we survey previous work on mod-
elling human perception of visual complexity. In
section 2.2, we discuss Jas and Parikh (2015)’s
study of image specificity, which parallels our study
in relating image content to image descriptions.

2.1 Modelling human perception of visual
complexity

Prior work has shown that there exist an array of
visual cues correlated with human judgements of
complexity. Oliva et al. (2004) found that people
intuitively relied on several key factors to judge
the complexity of indoor scenes, including the nu-
merosity, colorfulness, and arrangement of objects
in a scene.

Rosenholtz et al. (2007, p. 3) define "clutter"
as "the state in which excess items, or their repre-
sentation or organization, lead to a degradation of
performance at some task." Notably, they describe
clutter as related to complexity, and discuss the
difficulty of defining clutter due to the difficulty of
defining what an "item" is across scales. Rosen-
holtz et al. (2007) introduce a visual clutter measure
based on the variability of color, orientation, and
luminance in a visualization. Their metric success-
fully predicts the difficulty for humans to search
visualizations for target symbols, corresponding
to the idea that visually cluttered images are more
difficult to search.

Saraee et al. (2020) introduce the Unsupervised
and Supervised Activation Energy (UAE and SAE)
methods for measuring visual complexity. They



demonstrate that both UAE and SAE are moder-
ately to strongly correlated with human judgements
of complexity across the diverse types of images in
their SAVOIAS visual complexity dataset (see §3).
UAE and SAE are computed from feature maps
produced by the intermediate convolutional layers
of deep neural networks. These neural nets are
pre-trained on object or scene classification tasks.

The UAE method averages the values in the fea-
ture map from a layer over all receptive fields and
channels to produce an image’s complexity score.
SAE refines UAE by using a learned, weighted av-
erage of activations. By taking activations from the
intermediate layers, UAE and SAE balance the con-
tributions of both low-level features (e.g., edges),
extracted in early convolutional layers, and high-
level features (e.g., objects), formed in deep layers,
toward visual complexity.

Building upon the findings of Oliva et al. (2004),
Rosenholtz et al. (2007), and Saraee et al. (2018,
2020), our visual complexity metric (number of dis-
tinct mean-shift-segmented regions) is designed to
serve as an effective proxy for human complexity
perception by estimating the diversity and numeros-
ity of objects in an image. We decide not to rely on
complexity metrics derived from pre-trained mod-
els, such as UAE or SAE, due to the inherent biases
and necessarily limited vocabulary of such models
(see §4 for further discussion). Instead, we run the
mean-shift segmentation algorithm to generate re-
gions of homogeneous color in an image, followed
by filtering those regions for unique color and size.

In contrast to Oliva et al.’s focus exclusively on
indoor scenes, and Rosenholtz et al. (2007)’s focus
on artificially constructed visualizations, we test
our metric for robust performance on real-world
images from the Scenes, Objects, and Interior De-
sign categories of the SAVOIAS Dataset (Saraee
et al., 2018, 2020), as discussed in §§3 and 4. The
development of a novel low-level visual complexity
metric is motivated by Saraee et al. (2018, 2020)’s
demonstration that existing low-level complexity
metrics perform poorly on SAVOIAS.

2.2 Image specificity
Jas and Parikh (2015) introduce the concept of "im-
age specificity," the tendency for multiple people to
describe an image in similar words, for application
to text-based image retrieval. They find that image
specificity is associated with the image memora-
bility and the presence of "important objects," i.e.,
the objects in an image that draw human attention

and are likely to be included in an image descrip-
tion if present. Image specificity is also related to
image content in general, as shown by the success
of regression models in predicting specificity from
semantic features. However, length of image de-
scriptions alone could not predict image specificity.

Jas and Parikh’s concept of image specificity is
related to definitions of visual complexity that fo-
cus on the difficulty of describing complex images.
Perhaps difficulty of describing complex images
would translate into more variability in image de-
scriptions, and lower image specificity. Jas and
Parikh’s findings about the relationship between im-
age specificity and image content are also relevant
to our own study of the relationship between lin-
guistic complexity of image descriptions and image
content. Finally, the finding that image description
length alone was not predictive of image specificity
suggests that predicting complexity from image
descriptions, too, may be a non-trivial task.

3 Data

We use the SAVOIAS visual complexity dataset to
develop our groundtruth complexity metric (§§3.1,
4), and the Microsoft COCO Dataset to train
BERT for text-based prediction of visual complex-
ity (§§3.2, 5).

3.1 The SAVOIAS visual complexity dataset

The SAVOIAS dataset addresses the problem of
analysing visual complexity across diverse image
types by providing human-rated visual complexity
scores for images from seven categories: Scenes
(200 images), Advertisements (200 images), Vi-
sualization and Infographics (200 images), Ob-
jects (200 images), Interior Design (100 images),
Art (420 images), and Suprematism (100 images)
(Saraee et al., 2018, 2020). We use only the Scenes,
Objects, and Interior Design images, which Saraee
et al. randomly sampled from Zhou et al. (2017),
Lin et al. (2014), and IKEA.

Each SAVOIAS image is annotated with a visual
complexity score from 0 (least complex) to 100
(most complex). Scores were generated by asking
raters to compare two images at a time and choose
which one was more complex. The resulting rela-
tive complexity scores were converted to absolute
complexity scores via the Bradley-Terry method
and matrix completion.

Saraee et al. (2018, 2020) instructed raters that
visual complexity could be judged by image at-



tributes such as number and type of objects, people,
textures, patterns, and shapes present, and cluttered-
ness of the background. Raters were also asked to
use intuition to break ties between images that ap-
peared to be approximately equally complex. Thus,
the SAVOIAS visual complexity scores can be con-
sidered the result of a combination of raters’ natural
intuitions about visual complexity and attention to
the visual cues listed in the instructions for the task.

3.2 The Microsoft COCO dataset

The Microsoft Common Objects in Context (MS
COCO) Dataset was introduced by Lin et al. (2014)
with the goal of improving scene understanding.
COCO consists of 328,000 images annotated with
pixel-level segmentation masks for 91 common ob-
ject categories. Images were collected by querying
Flickr with pairs of object category names as key-
words, in order to yield more "non-iconic" images
picturing objects in their real-world contexts.

The characteristics of iconic and non-iconic im-
ages in MS COCO, as described by Lin et al., over-
lap with those of noncomplex and complex images,
respectively. For instance, presence of multiple
object types, occlusion of objects, and clutter are
characteristics of both non-iconic and visually com-
plex images. In contrast, iconic images share many
characteristics with visually noncomplex images,
such as presenting objects in isolation, against a
plain background, or featuring scenes devoid of
people. The mix of iconic and non-iconic images
in COCO makes it an appropriate choice for our
own study of visual complexity, which requires ex-
amples of both complex and noncomplex images.

The Microsoft COCO Caption datasets (MS
COCO c5 and MS COCO c40) provide human-
generated descriptions for MS COCO images, with
the goal of aiding research in automatic caption
generation (Chen et al., 2015). In this work, we
use MS COCO c5, which provides 5 independently
generated captions per training, validation, and test
set image. Captions for MS COCO c5 were col-
lected via AMT. Captioners were instructed to fo-
cus on describing "important" parts of the images;
avoid starting with "There is," making hypothetical
statements about the events or people pictured, or
naming people; and write in sentences of at least 8
words.

4 Visual complexity: definition

In this section, we introduce our novel number of
distinct regions visual complexity metric. We use
our metric to label MS-COCO images for training
our text-based regression and classification models
(§5).

We developed and evaluated our automated vi-
sual complexity metric based on prior work on the
SAVOIAS dataset by Saraee et al. (2018, 2020).
Saraee et al. (2020) introduced the Unsupervised
and Supervised Activation Energy metrics, which
rely on extracting activations from pre-trained ob-
ject classification and scene recognition models
(see §2.1). However, rather than rely on high-level
complexity scores derived from pre-trained models,
due to our concerns about the inherent biases of
such models, we choose to focus on lower level
metrics based on image processing techniques.

We are especially concerned about the accumu-
lation of biases given the design of our text-based
complexity prediction task. Recall that we first
score Microsoft COCO images’ visual complex-
ity, then use these groundtruth scores to fine-tune
pre-trained text-based classification and regression
models. Using a complexity metric output by one
model as the input labels to our text-based mod-
els could transmit and amplify biases acquired by
the complexity model from training on a specific
dataset.

In addition to their own UAE and SAE met-
rics, Saraee et al. (2020) evaluated five existing
low-level automated visual complexity metrics by
computing their correlations with the SAVOIAS
groundtruth complexity scores. Because Scenes,
Objects, and Interior Design images are most rep-
resentative of the real-world photographs we are
interested in analysing complexity for, we focused
on developing a low-level metric that would per-
form well on these categories.

Of the low-level complexity metrics tested by
Saraee et al. (2020), number of regions per image
has the highest correlation for the Scenes category
(r = 0.57) and the second-highest correlations for
the Objects and Interior Design categories (r = 0.29
and r = 0.69, respectively). As shown in Table
1, when we recomputed number of regions using
the mean-shift segmentation algorithm implementa-
tion provided by Jean (2020), we obtained slightly
higher correlations of r = 0.63,0.36, and 0.71. (See
Comaniciu and Meer (2002) for an introduction to
the mean-shift segmentation algorithm.) Therefore,



Table 1: Performance of visual complexity metrics tested by Saraee et al. (2020) versus our number of distinct
regions metric on SAVOIAS Scenes, Objects, and Interior Design images, as well as for all 3 categories combined.
Performance is measured by the Pearson correlation coefficient between automated and groundtruth (i.e., human-
generated) complexity scores. p < 0.001 for all self-computed metrics (i.e., those not from Saraee et al.) on all
categories. Number of regions, as computed by Saraee et al. (2020), is the best low-level complexity metric on the
Scenes category and the second-best low-level metric on the Objects and Interior Design categories, behind feature
congestion and compression ratio, respectively.

Type Metric Scenes Objects Interior Design All

Low-level Compression ratio (Saraee et al., 2020) 0.30 0.16 0.72 –
Low-level Feature congestion (Saraee et al., 2020) 0.42 0.30 0.63 –
Low-level Number of regions (Saraee et al., 2020) 0.57 0.29 0.69 –

High-level VGG16 Scene Recognition, UAE (Saraee
et al., 2020)

0.76 0.67 0.82 –

High-level VGG16 Object Classification, UAE (Saraee
et al., 2020)

0.77 0.64 0.83 –

High-level VGG16 Object Classification, SAE from
Depth Features (Saraee et al., 2020)

0.85 0.80 0.86 –

Low-level Number of regions [Ours] (Comaniciu and
Meer, 2002; Jean, 2020)

0.63 0.36 0.71 0.50

Low-level Number of distinct regions [Ours] 0.73 0.55 0.81 0.62

we focused on refining the number of regions met-
ric to use as our groundtruth complexity measure
on MS COCO.

In order to qualitatively evaluate the mean-shift-
segmented number of regions metric, we ranked
SAVOIAS Scenes, Objects, and Interior Design
images by number of regions, followed by manual
inspection of the resulting rankings. We found that
using the raw number of regions per image as a
measure of complexity overestimated the complex-
ity of images that were highly textured or contained
repeating patterns and shapes. Figure 2 shows two
SAVOIAS images which have similar numbers of
regions in their mean-shift segmentations, but do
not intuitively share the same level of complexity.
The image on the right in Figure 2 contains many
repeated instances of red and green balls, whereas
the image on the left contains greater diversity of
colors, shapes, and object types, suggesting that it
should be considered more complex.

Our number of distinct regions metric improves
upon the number of regions metric by counting only
those regions which have unique size and color. As
shown in the bottom row of Figure 2, our distinct
regions algorithm successfully excludes regions of
similar size and color (such as many of the green
and red balls in the image on the right) from being
counted toward an image’s complexity.

In §4.1, we give an overview of our distinct re-
gions algorithm. In §§4.2 and 4.3, we discuss how
similarity between region color and size is deter-
mined.

4.1 Distinct regions algorithm

In Algorithm 1, we introduce our procedure for
counting distinct regions from the set of regions S
in the mean-shift segmentation of an image. We
begin by initializing a set D of distinct regions with
a single arbitrarily chosen region from S. Next, we
iterate through the regions s ∈ S. For each region
s, we compare its size to all regions d ∈ D. Any
region s with sufficiently different size from all
d ∈D is added to D. (Note that region size acts as a
more readily quantifiable proxy for region shape.)
Otherwise, if s is similarly sized to any d ∈D, we
compare the color of s to the colors of all d ∈D. If s
has distinct color from all d ∈D, even though it may
be similarly sized to some d ∈D, s is added to D.
Finally, if s fails both the size and color similarity
tests, s is not added to D. The algorithm terminates
after returning D. The complexity of the image can
be computed as ∣D∣, i.e., number of distinct regions
in the image.

We considered alternative approaches to measur-
ing distinctness, such as computing a hash code for
each image region, then making all possible region
comparisons (which would require n2 comparisons
for n regions in all cases). Ultimately, we chose the
two-stage region comparison approach presented
here for its relative efficiency.

Note that the number of distinct regions in
an image is necessarily dependent upon the size
and color similarity thresholds, δs and δc, set
by the user to define size and color distinct-



Figure 2: Two SAVOIAS images, one from the Objects
category (left) and one from the Scenes category (right). The
top row shows the original images, the middle row shows their
mean-shift segmentations, and the bottom row shows distinct
regions from the segmentations in yellow. Both images have
similar complexities as measured by raw number of regions
(261 regions for the image on the left and 263 regions for the
image on the right). While both images contain many objects,
the image on the left is more colorful and contains a greater
variety of objects, suggesting that it should be considered more
complex than the image on the right. Our number of distinct
regions metric is derived from this observation, reducing the
contribution of repeated instances of the same object (e.g., the
many red and green balls in the picture on the right) to an
image’s complexity score.

ness. Larger values of δs and δc translate to
stricter definitions of size and color distinct-
ness, as the tests di f f erence(size(s),size(d)) > δs

and di f f erence(colors(s),color(d) > δc become
more difficult to pass.

In §§ 4.2 and 4.3, we discuss how size and
color difference, di f f erence(size(s),size(d)) > δs

and di f f erence(colors(s),color(d) > δc, are com-
puted.

Algorithm 1 Filtering for Distinct Regions from
Mean-Shift Segmentation
Require: S: set of image regions, δc: color similarity thresh-

old, δs: size similarity threshold
1: D ∶= {sstart} where sstart some s ∈ S
2: S ∶= S−{sstart}
3: for s ∈ S do
4: if ∀d ∈D di f f erence(size(s),size(d)) > δs then
5: D ∶=D⋃{s}
6: else if ∀d ∈ D di f f erence(color(s),color(d)) > δc

then
7: D ∶=D⋃{s}
8: else
9: continue

10: end if
11: end for
12: return D
13: end

4.2 Size difference

The difference D in sizes of two regions s1 and s2
in image I is computed as

di f f erence(size(s1),size(s2)) =

∣

size(s1)

size(I)
−

size(s2)

size(I)
∣ (1)

where size(s1),size(s2) and size(I) are computed
as the number of pixels contained in the region or
image, e.g.,

size(I) =width(I)∗height(I) (2)

Equation 1 is partially inspired by the region
size similarity measure introduced in Uijlings et al.
(2013).

4.3 Color difference

Region color is output by Jean’s PyMeanShift seg-
mentation algorithm in RGB colorspace, as the
mean value of the pixels in the region. To com-
pute color difference between two given regions,
we convert both regions’ colors to CIELAB color
space via the Python colormath module (Taylor,
2021). We then compute the CIEDE2000 color dif-
ference between the two region colors (Luo et al.,
2001), also using colormath.

5 Text-Based Prediction of Visual
Complexity

In order to train text-based models to predict visual
complexity, we need an image dataset with both
(1) high-quality text descriptions of images and
(2) groundtruth visual complexity scores for the



images. Due to the lack of existing datasets meet-
ing both criteria, we develop our own automated
visual complexity metric (§4), use it to score the vi-
sual complexity of images in the Microsoft COCO
dataset (§5.1), then train regression and classifica-
tion models to predict image complexity from the
image captions provided by COCO.

5.1 Data preprocessing
Because caption and instance annotations are not
publicly available for MS COCO test set images,
we resplit the MS COCO 2017 training and valida-
tion sets to produce our own training, validation,
and test sets for training our classification and re-
gression models. The MS COCO 2017 dataset
split, including annotations, is available for down-
load from Lin et al. (2021). Here, we report only
performance on our validation set. We plan to re-
port test set statistics in future work.

First, we segment the MS COCO training and
validation set images using PyMeanShift, with a
spatial radius of 3, range radius of 10, and mini-
mum density of 300 (Jean, 2020; Comaniciu and
Meer, 2002). Next, we count distinct regions per
image using Algorithm 1, with δs = 0.05 and δc = 4.
Correlations between SAVOIAS groundtruth com-
plexity score, number of regions, and distinct num-
ber of regions for these choices of parameters can
be found in Table 1.

Table 2 summarizes our resplit datasets. Each
image has a single complexity label but multiple
captions. Consequently, captions corresponding to
the same image are assigned the same label but are
treated as independent samples during training and
testing.

For the classification model, we take the top and
bottom 10% of MS COCO training images with the
most/fewest distinct regions, labeling these as com-
plex and noncomplex, respectively. We randomly
sample 500 complex and 500 noncomplex images
from the labelled MS COCO 2017 training set to
use as our validation set. The remaining MS COCO
training images not used in our validation set are
used as our training data. Finally, we use the MS
COCO 2017 validation set as our test set. We take
the top and bottom 10% of validation images with
the most/fewest distinct regions, and label these as
complex and noncomplex, respectively.

For the regression model, we normalize the num-
ber of distinct regions r per image to yield a com-
plexity score c in the range (0,1), according to the
following formula:

c = tanh(
r

80
) (3)

As shown in Figure 3, complexity scores for both
the training and validation sets are approximately
normally distributed.
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Figure 3: Distribution of complexity scores in regression
training and validation sets. Complexity scores are computed
as c = tanh( r

80) where r is the number of distinct regions per
image.

Next, we randomly sample 5,000 images from
the MS COCO 2017 training set to use as our vali-
dation set. The remaining MS COCO 2017 training
set images not included in our regression validation
set are used for training. We use the full MS COCO
2017 validation set as our test set.

For both the classification and regression mod-
els, COCO captions are tokenized using a pre-
trained BERTBASE (uncased) tokenizer, available
from Hugging Face (Tokenizers; Kenton et al.,
2019). The inputs to both classification and re-
gression models are tokenized captions of size 128.

5.2 Finetuning the classification model

We fine-tune a pretrained BERTBASE (uncased)
model to predict image complexity from image
captions via mini-batch stochastic gradient descent,
with a batch size of 10. We use the BERTBASE
implementation available from the Hugging Face
transformers library, which includes a sequence
classification/regression head (Hugging Face Trans-
formers; Kenton et al., 2019). The model inputs
are tokenized COCO captions of size 128, each
carrying a binary label of "complex" (1) or "non-
complex" (0) as described in §5.1. The model
output is a scalar x which is normalized to yield
the probability p that the input caption describes a
complex image:

P(complex) = p = σ(x) =
1

1+e−x (4)

Our loss function is binary cross-entropy loss,
where the loss l given probability p and binary



Table 2: Regression and classification dataset statistics. Because the MS COCO test set annotations are not publicly available,
we create our own test set from the MS COCO 2017 validation set, and split the MS COCO 2017 training set into new training
and validation sets.

Task Split Image source # images # captions
Binary classification train MS COCO 2017 train set 22656 113342
Binary classification val MS COCO 2017 train set 1000 5001
Binary classification test MS COCO 2017 val set 1000 5004
Regression train MS COCO 2017 train set 113287 566747
Regression val MS COCO 2017 train set 5000 25006
Regression test MS COCO 2017 val set 5000 25014

label y is

l = y∗ log(p)+(1−y)∗ log(1− p) (5)

We use the PyTorch AdamW optimizer with learn-
ing rate λ = 2∗10−5 and ε = 1∗10−8 (Loshchilov
and Hutter, 2019, 2017). We decrease λ according
to a linear schedule without warmup steps.

After fine-tuning for 4 epochs, we choose the
model with the highest accuracy on the validation
set.

5.3 Fine-tuning the regression model
The procedures for fine-tuning the regression
model are identical to those for the classification
model, except for the model inputs and loss func-
tion.

For regression, inputs are tokenized COCO cap-
tions of size 128, each labeled with a complexity
score in the interval (0,1), as described in § 5.1.
As with the classifier, the regression model out-
put is normalized to yield a scalar in the interval
(0,1), which is the predicted complexity score for
the input caption rather than the probability that the
image is complex.

The loss function for regression is mean squared
error, computed as

l = (x−y)2 (6)

for true complexity score y and predicted complex-
ity score x.

After fine-tuning for 4 epochs, we choose the
model with the lowest loss on the regression vali-
dation set. For the purpose of computing average
precision (as described in §6), we also evaluate the
fine-tuned regression model on the classification
validation set.

6 Results

6.1 Quantitative analysis of results
The classification model achieves an accuracy of
83.9% and an average binary cross entropy loss

of 0.411 on the validation set. The ability of the
text-based BERTBASE model to achieve such high
accuracy on the visual complexity prediction task
suggests substantial biases in how people describe
complex and noncomplex images in COCO cap-
tions.

The regression model achieves a mean squared
error loss of 0.030 and a Pearson’s correlation of
r = 0.659 (p < 0.001) between predicted and true
complexity scores on the validation set. When pre-
dicted complexity scores are averaged across all
captions for each image, the correlation increases
to r = 0.716 (p < 0.001), demonstrating that ac-
cess to multiple text inputs results in more precise
predictions. However, even in the more realistic
real-world scenario of access to only a single cap-
tion, the regression model seems to be extracting
substantial information about the visual complexity
of COCO images from their captions.

We also compute average precision for both clas-
sification and regression models with scikit-learn
(Pedregosa et al., 2011). The average precision
computation for the classifier is straightforward,
requiring the model’s probability estimates of the
positive class ("complex") and labels on the clas-
sification validation set. For the regression model,
we treat its predicted complexity scores as the out-
put of a decision function for classifying images
as complex or noncomplex. We compute average
precision for the regression model only on the clas-
sification validation set, for which we have binary
complexity labels.

Average precision for the classification model
evaluated on the classification validation set is
0.913. Average precision for the regression model
evaluated on the classification validation set is
0.951. The regression model’s better performance
can be attributed to its much larger training set,
566,747 captions compared to 113,342 captions
for the classification training set (see Table 2).

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://huggingface.co/docs/transformers/main_classes/optimizer_schedules#transformers.get_linear_schedule_with_warmup
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html


6.2 Qualitative analysis of results

Table 3 shows images predicted by the fine-tuned
BERT classifier to be complex (top row) and non-
complex (bottom row), based on their captions.
(The results for the regression model are similar.)
While the model’s predictions are mostly correct
and correspond to our intuitive sense of visual com-
plexity, some biases are evident.

For example, BERT tends to predict that food
images will be complex, as with the second and
fourth images in Table 3. We hypothesize that this
is due to two main factors. First, our number of
distinct regions metric tends to count many regions
for images of food, since they are typically col-
orful and contain a large number of objects, e.g.,
piles of fruit at an outdoor market or toppings on
a pizza. Second, even discounting any bias in our
groundtruth complexity algorithm, a substantial
majority of images containing food in the COCO
dataset are complex, as shown in Figure 4. Thus,
the model learns to associate references to food
in image captions with higher visual complexity
scores.

In contrast, images containing objects of other
COCO categories, e.g., the "airplane" category,
have the opposite imbalance—i.e., more noncom-
plex than complex captions in the training set. The
noncomplex airplane image in Table 3 is repre-
sentative of most airplane images in the COCO
dataset: the airplane is centered against the plain
background of the sky. Thus, image captions con-
taining the word "airplane" are much more likely
to result in a noncomplex prediction. Image cap-
tions describing beach scenes, surfers, and skiiers
also tend to be predicted noncomplex, for the same
reason: images of these scenarios are frequently
noncomplex in the COCO dataset, as shown by the
example images in Table 3 and the dataset statistics
in Figure 4.

The model’s learned, MS COCO–specific biases
may hurt its ability to generalize to other data. Af-
ter all, not all real-world images of food are com-
plex, and not all real-world images of airplanes
are noncomplex. Indeed, the second noncomplex
prediction in Table 3 illustrates model error pre-
sumably due to overreliance on captioning content
for making its predictions. While most MS COCO
images of skiiers are noncomplex, with the ma-
jority of the image taken up by uniformly colored
snow or sky (which are segmented into very few
regions when computing the complexity score), the

image in Table 3 is clearly complex, featuring a
large, colorful crowd. We would expect the model
to pick up the words "huge audience" in the caption
as a cue of high visual complexity, but instead the
model likely takes the word "skiier" as a cue of low
complexity.

We would like to determine if it is possible for
the model to learn to predict visual complexity
from syntax instead of vocabulary. In §7, we dis-
cuss our approach to mitigating the effects of com-
plexity biases in the MS COCO dataset.

7 Mitigating Complexity Biases in the MS
COCO Dataset

The classification and regression models trained on
our full datasets learn content-related biases, e.g.,
that images of food in the MS COCO dataset tend
to complex and that images of airplanes tend to be
noncomplex. These biases harm model accuracy
and generalizability.

In this section, we describe two approaches to
mitigating the complexity biases in the COCO
dataset while fine-tuning our models to predict
visual complexity from text. In Section 7.1, we
describe the setup for our cross-domain evaluation
experiments, and in Section 7.2, we describe our ex-
periments fine-tuning with hypernymized captions.
In Section 7.3, we discuss the results.

7.1 Cross-domain evaluation

We hypothesize that fine-tuning BERT on an object
category–specific subset of the COCO captioning
dataset, rather than the full set, should decrease
the model’s ability to leverage content-related com-
plexity cues, forcing it instead to rely on sentence
structure. For example, if a model is trained only
on images containing food, it would be forced to
focus on complexity cues other than the references
to food in the captions in order to make its pre-
dictions. Furthermore, the model would be less
prone to develop biases with respect to typically
noncomplex COCO dataset object categories. For
example, if the model has never seen captions for
images of airplanes during training, it should not
have a bias toward predicting that airplane images
are noncomplex (despite the fact that this is true in
the COCO dataset).

We carry out our cross-domain evaluation as
follows. First, we filter our classification and re-
gression datasets (see §5) using the publicly avail-
able COCO instance annotations, to create 12 new



Table 3: Examples of images predicted by BERT to be complex (top row) and noncomplex (bottom row) based on their
captions.

C
om

pl
ex

"several different types
of stuffed animals

arranged on shelves."
p(complex) = 0.994,

label = 1

"a colorful farmers
market has vegetables
and fruit on display."
p(complex) = 0.995,

label = 1

"a crowd gathered for a
small-town parade

looks on as the next
float comes down the

street."
p(complex) = 0.994,

label = 1

"a plate with sliced
pizza and a bottle of

beer."
p(complex) = 0.991,

label = 1

no
nc

om
pl

ex

"a couple of surfers in
wetsuits catching a

gentle wave"
p(complex) = 0.002,

label=0

"a skiier jumps into the
air in front of a huge

audience ."
p(complex) = 0.004,

label=1

"the airplane is flying in
the clear blue sky."

p(complex) = 0.002,
label=0

"a woman on a sandy
beach flying a kite."
p(complex) = 0.001,

label=0

Figure 4: Complex and noncomplex captions in the classification training set by COCO dataset object category. Each pair of
bars represents the number of image captions in the training set for images that include at least one instance of the corresponding
category. Note that images containing food- and kitchen-related objects tend to be more complex, while images containing
airplanes and certain sports- or bathroom-related objects tend to be less complex.



datasets. Eleven datasets contain captions for im-
ages that include objects belonging to each of the
eleven COCO supercategories. The twelfth dataset
contains captions for images that include instances
of the COCO person category. Training set statis-
tics are summarized in Table 4. Note that these
category-specific datasets are not perfectly disjoint,
as many COCO images contain multiple object
categories.

We fine-tune BERTBASE classification and re-
gression models on each of the 12 supercategory
datasets, using mostly the same setup as described
in §§5.2 and 5.3. To mitigate for the class im-
balance in the classification datasets, we use the
PyTorch Weighted Random Sampler to ensure bal-
anced mini-batches during training. Given a list of
all n labels in our training set

t1,t2, ...,tn (7)

the Weighted Random Sampler samples from the
set according to probabilities (or weights)

p1, p2, ..., pn (8)

We compute the weights as follows. If ti = 1 (com-
plex) for 1 ≤ i ≤ n, then

pi =
1

ncomplex
(9)

i.e., the weight for a complex sample is the recip-
rocal of the number of complex training samples.
Similarly, if ti = 0 (noncomplex), then

pi =
1

nnoncomplex
(10)

We still use mini-batch stochastic gradient descent,
taking batches of size 10. Note that we sample with
replacement, which means that a given caption may
appear multiple times in the same batch.

We evaluate each of our fine-tuned models on
the person dataset, all 11 supercategory datasets,
and the full dataset. See Section 7.3 for results.

7.2 Training with hypernymized captions
Nouns, verbs, adjectives, and adverbs carry most of
the object content cues in image captions. We hy-
pothesize that fine-tuning BERT on captions where
these parts of speech are hypernymized will result
in a more generalizable model, with less complex-
ity bias learned from the COCO dataset.

For the hypernymization, we first use NLTK’s
off-the-shelf part-of-speech (POS) tagger to label

the parts of speech in our COCO captioning data
with the Penn Treebank tagset (Loper and Bird,
2002). We then make the substitutions shown in
Table 5, substituting generic placeholders for all
nouns, verbs, adjectives, and adverbs.

To investigate how much the models rely on
caption content, we create four versions of each
dataset described in Section 7.1, with:

1. nouns hypernymized
2. nouns and verbs hypernymized
3. nouns, verbs, and adjectives hypernymized
4. nouns, verbs, adjectives, and adverbs hyper-
nymized

Thus the caption

(1) Shelves of stuffed animals of various color
and shapes.

becomes

(2) objects of plain objects of plain object and
objects.

Limitations of our hypernymization approach
include error in the POS tagging. We find
that the default off-the-shelf NLTK POS tagger
achieves 89.3% accuracy on the Penn Treebank
Corpus and 61.9% accuracy on the Brown Corpus
(Marcinkiewicz, 1994; Francis and Kucera, 1979).
However, from qualitative observation, most sen-
tences are still comprehensible after undergoing
hypernymization.

Another limitation of our approach is the coarse-
ness of our placeholder words. Substituting all
nouns with the word "object" or "objects" obscures
the distinction between uncountable nouns (e.g.,
"sky") and countable nouns (e.g., "objects"). Simi-
larly, substituting all verbs with forms of the verb
"act" obscures the distinction between transitive
verbs (e.g., "throw [something]") and intransitive
verbs (e.g., "walk"). And it is somewhat difficult to
find appropriately generic placeholders for adjec-
tives and adverbs, which are by definition descrip-
tive.

As a possible future approach to the problem
of hypernymizing COCO captions, we propose us-
ing either WordNet synsets or Glove word embed-
dings to select the appropriate substitution for each
part of speech (Fellbaum, 2010; Pennington et al.,
2014).

https://pytorch.org/docs/stable/data.html#torch.utils.da ta.WeightedRandomSampler
https://www.nltk.org/api/nltk.tag.html#nltk.tag.pos_tag
https://www.nltk.org/api/nltk.tag.perceptron.html?highlight=perceptron%20tagger#nltk.tag.perceptron.PerceptronTagger


COCO (super)category classification set
# complex

classification set
# noncomplex

regression set # total

person 35,895 30,674 307,365
vehicle 16,808 11,748 131,297
outdoor 8,075 3,673 61,860
animal 8,860 12,163 114,834
accessory 13,200 6,817 84,781
sports 6,466 17,956 111,282
kitchen 15,976 3,137 99,430
food 16,792 1,521 77,820
furniture 18,321 8,785 141,086
electronic 5,282 2,897 62,151
appliance 2,111 3,527 37,632
indoor 7,773 4,821 75,917

Table 4: Number of complex and noncomplex image captions per COCO (super)category for classification and
regression datasets. Note that the majority of the classification datasets suffer from severe class imbalance between
complex and noncomplex training examples. We mitigate class imbalance using the PyTorch Weighted Random
Sampler during training.

Figure 5: Distribution of complexity scores in regression training and validation sets. Complexity scores are computed as
c = tanh( r

80) where r is the number of distinct regions per image.

7.3 Results

We report the results of our cross-domain eval-
uation experiments in Table 6. For each object
category–specific dataset, as well as for the full
captioning dataset, we report the training set of
the best model evaluated on that dataset, baseline
accuracy, validation set accuracy/loss, average pre-
cision, and (for regression models) the Pearson’s
correlation between predicted and true complexity
scores.

As our baseline accuracy, we take the accuracy
that would result from always guessing the major-
ity class, i.e., the proportion of training captions
which are labeled with the majority class (com-
plex or noncomplex) for that category. For all 13
datasets in Table 6, the best classification model
has higher accuracy on the validation set than base-
line. On 4 out of 12 category-specific classification
datasets and on the full dataset, the best classifier is
the model trained on the full captioning data. For
the regression datasets, the model trained on the
full data is the best performing model on 8 out of
12 categories and the full dataset. The regression

and classification models trained on the full cap-
tioning datasets do not suffer as substantial a loss in
performance as expected when evaluated on image
captions for only a single COCO category, contrary
to our hypothesis.

Cases where models trained on a category-
specific dataset outperform the models trained on
the full dataset most likely result from the similar-
ity of the training and validation data. For example,
the best classifier on the "furniture" and "appliance"
categories is trained on "indoor" image captions.
In all cases where the best regression model on a
category is not the model trained on the full set, it
is instead trained on the same category.

In Figure 5 we plot accuracy and loss for the
classification and regression models as we hyper-
nymize increasing parts of speech in the COCO
captioning data. As expected, accuracy decreases
and loss increases for both the classification and
regression models as more parts of speech are hy-
pernymized. Note that hypernymizing adverbs
when nouns, verbs, and adjectives are already
hypernymized does not noticeably impact model

https://pytorch.org/docs/stable/data.html#torch.utils.data.WeightedRandomSampler
https://pytorch.org/docs/stable/data.html#torch.utils.data.WeightedRandomSampler


Word tagged with Substitute
with

NN, NNP object

NNS, NNPS objects

VB, VBP act

VBD, VBN acted

VBG acting

VBZ acts

JJ plain

JJR, RBR plainer

JJS, RBS plainest

RB plainly

Table 5: Placeholder words for nouns, verbs, adjectives, and
adverbs. By fine-tuning BERT classification and regression
models on captioning data transformed with the above sub-
stitutions, we expect to produce a more generalizable, less
biased model.

performance. This suggests that the majority of
complexity-related vocabulary is already covered
by nouns, verbs, and adjectives.

Additionally, even when all 4 parts of speech
are hypernymized, the classification model still per-
forms substantially better than baseline (random
guessing), at 69.5% accuracy on the validation set.
We therefore conclude that in addition to vocabu-
lary, BERT must rely at least partially on sentence
structure to make its complexity predictions.

8 Conclusion and future work

In this work, we introduced the task of text-based
visual complexity prediction, hypothesizing that
image descriptions typically contain enough cues
of image complexity for a model to predict vi-
sual complexity solely from the descriptions. We
defined a new visual complexity metric, number
of distinct regions, and used it to groundtruth the
complexity of images from the Microsoft COCO
dataset. We found that BERTBASE models fine-
tuned on COCO captioning data to classify images
as complex/noncomplex or predict a continuous
complexity score succeed on the task with a high
degree of accuracy. BERT appears to primarily
rely on vocabulary and, to some extent, sentence
structure in its predictions. Future models of vi-
sual complexity may thus benefit from integrating
language and vision inputs.

We also found biases in the COCO Dataset
with respect to how different object categories
are typically represented, and which combinations
of objects tend to correspond to complex images.
This has implications for other models trained on
COCO, which may pick up the dataset’s biases.

In future work, we plan to release test set per-
formance statistics for our models, perform further
analysis of COCO captions’ sentence structure, and
visualize BERT’s attention to different parts of the
captions. Possible alternative approaches to iden-
tifying complex images include using multimodal
models or datasets other than COCO, thus expand-
ing the study of visual and linguistic complexity to
more domains. Future applications of complexity
modeling could include identification of problem-
atic images for object segmentation or detection
models and evaluating aesthetic appeal and ease of
use for artwork and web design (Saraee et al., 2018,
2020).

9 Code

Code for this project is available at https://

github.com/emlinking/visual-complexity.
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